Copied to
clipboard

G = C4220D6order 192 = 26·3

18th semidirect product of C42 and D6 acting via D6/C3=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C4220D6, C6.1242+ 1+4, (C4×S3)⋊4D4, (C2×Q8)⋊21D6, C4.32(S3×D4), C22⋊C420D6, D6.45(C2×D4), C4.4D48S3, C12.61(C2×D4), Dic3⋊D439C2, D6⋊D423C2, C123D424C2, C4⋊D1214C2, (C4×C12)⋊22C22, D6⋊C423C22, (C2×D4).171D6, (C2×D12)⋊9C22, (C6×Q8)⋊12C22, C6.88(C22×D4), C422S319C2, C2.48(D4○D12), (C2×C6).218C24, Dic3.50(C2×D4), C12.23D421C2, (C2×C12).186C23, Dic3⋊C455C22, C34(C22.29C24), (C4×Dic3)⋊35C22, (C6×D4).153C22, (C22×C6).48C23, C23.50(C22×S3), (S3×C23).63C22, C22.239(S3×C23), (C22×S3).213C23, (C2×Dic3).113C23, (C2×S3×D4)⋊16C2, C2.61(C2×S3×D4), (S3×C2×C4)⋊25C22, (C2×Q83S3)⋊10C2, (C3×C4.4D4)⋊10C2, (C2×C3⋊D4)⋊22C22, (C3×C22⋊C4)⋊28C22, (C2×C4).193(C22×S3), SmallGroup(192,1233)

Series: Derived Chief Lower central Upper central

C1C2×C6 — C4220D6
C1C3C6C2×C6C22×S3S3×C23C2×S3×D4 — C4220D6
C3C2×C6 — C4220D6
C1C22C4.4D4

Generators and relations for C4220D6
 G = < a,b,c,d | a4=b4=c6=d2=1, ab=ba, cac-1=dad=a-1, cbc-1=a2b-1, dbd=b-1, dcd=c-1 >

Subgroups: 1104 in 334 conjugacy classes, 103 normal (29 characteristic)
C1, C2, C2, C2, C3, C4, C4, C22, C22, S3, C6, C6, C6, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C23, Dic3, Dic3, C12, C12, D6, D6, C2×C6, C2×C6, C42, C42, C22⋊C4, C22⋊C4, C4⋊C4, C22×C4, C2×D4, C2×D4, C2×Q8, C4○D4, C24, C4×S3, C4×S3, D12, C2×Dic3, C2×Dic3, C3⋊D4, C2×C12, C2×C12, C3×D4, C3×Q8, C22×S3, C22×S3, C22×S3, C22×C6, C42⋊C2, C22≀C2, C4⋊D4, C4.4D4, C4.4D4, C41D4, C22×D4, C2×C4○D4, C4×Dic3, Dic3⋊C4, D6⋊C4, C4×C12, C3×C22⋊C4, S3×C2×C4, S3×C2×C4, C2×D12, C2×D12, S3×D4, Q83S3, C2×C3⋊D4, C6×D4, C6×Q8, S3×C23, C22.29C24, C422S3, C4⋊D12, D6⋊D4, Dic3⋊D4, C123D4, C12.23D4, C3×C4.4D4, C2×S3×D4, C2×Q83S3, C4220D6
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, C24, C22×S3, C22×D4, 2+ 1+4, S3×D4, S3×C23, C22.29C24, C2×S3×D4, D4○D12, C4220D6

Smallest permutation representation of C4220D6
On 48 points
Generators in S48
(1 22 9 19)(2 20 7 23)(3 24 8 21)(4 13 11 16)(5 17 12 14)(6 15 10 18)(25 32 38 43)(26 44 39 33)(27 34 40 45)(28 46 41 35)(29 36 42 47)(30 48 37 31)
(1 30 10 40)(2 28 11 38)(3 26 12 42)(4 25 7 41)(5 29 8 39)(6 27 9 37)(13 32 23 35)(14 47 24 44)(15 34 19 31)(16 43 20 46)(17 36 21 33)(18 45 22 48)
(1 2 3)(4 5 6)(7 8 9)(10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)
(1 8)(2 7)(3 9)(4 11)(5 10)(6 12)(14 18)(15 17)(19 21)(22 24)(25 28)(26 27)(29 30)(31 36)(32 35)(33 34)(37 42)(38 41)(39 40)(43 46)(44 45)(47 48)

G:=sub<Sym(48)| (1,22,9,19)(2,20,7,23)(3,24,8,21)(4,13,11,16)(5,17,12,14)(6,15,10,18)(25,32,38,43)(26,44,39,33)(27,34,40,45)(28,46,41,35)(29,36,42,47)(30,48,37,31), (1,30,10,40)(2,28,11,38)(3,26,12,42)(4,25,7,41)(5,29,8,39)(6,27,9,37)(13,32,23,35)(14,47,24,44)(15,34,19,31)(16,43,20,46)(17,36,21,33)(18,45,22,48), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,8)(2,7)(3,9)(4,11)(5,10)(6,12)(14,18)(15,17)(19,21)(22,24)(25,28)(26,27)(29,30)(31,36)(32,35)(33,34)(37,42)(38,41)(39,40)(43,46)(44,45)(47,48)>;

G:=Group( (1,22,9,19)(2,20,7,23)(3,24,8,21)(4,13,11,16)(5,17,12,14)(6,15,10,18)(25,32,38,43)(26,44,39,33)(27,34,40,45)(28,46,41,35)(29,36,42,47)(30,48,37,31), (1,30,10,40)(2,28,11,38)(3,26,12,42)(4,25,7,41)(5,29,8,39)(6,27,9,37)(13,32,23,35)(14,47,24,44)(15,34,19,31)(16,43,20,46)(17,36,21,33)(18,45,22,48), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,8)(2,7)(3,9)(4,11)(5,10)(6,12)(14,18)(15,17)(19,21)(22,24)(25,28)(26,27)(29,30)(31,36)(32,35)(33,34)(37,42)(38,41)(39,40)(43,46)(44,45)(47,48) );

G=PermutationGroup([[(1,22,9,19),(2,20,7,23),(3,24,8,21),(4,13,11,16),(5,17,12,14),(6,15,10,18),(25,32,38,43),(26,44,39,33),(27,34,40,45),(28,46,41,35),(29,36,42,47),(30,48,37,31)], [(1,30,10,40),(2,28,11,38),(3,26,12,42),(4,25,7,41),(5,29,8,39),(6,27,9,37),(13,32,23,35),(14,47,24,44),(15,34,19,31),(16,43,20,46),(17,36,21,33),(18,45,22,48)], [(1,2,3),(4,5,6),(7,8,9),(10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48)], [(1,8),(2,7),(3,9),(4,11),(5,10),(6,12),(14,18),(15,17),(19,21),(22,24),(25,28),(26,27),(29,30),(31,36),(32,35),(33,34),(37,42),(38,41),(39,40),(43,46),(44,45),(47,48)]])

36 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I2J2K 3 4A4B4C4D4E4F4G4H4I4J6A6B6C6D6E12A···12F12G12H
order122222222222344444444446666612···121212
size11114466121212122224444661212222884···488

36 irreducible representations

dim1111111111222222444
type+++++++++++++++++++
imageC1C2C2C2C2C2C2C2C2C2S3D4D6D6D6D62+ 1+4S3×D4D4○D12
kernelC4220D6C422S3C4⋊D12D6⋊D4Dic3⋊D4C123D4C12.23D4C3×C4.4D4C2×S3×D4C2×Q83S3C4.4D4C4×S3C42C22⋊C4C2×D4C2×Q8C6C4C2
# reps1114411111141411224

Matrix representation of C4220D6 in GL6(𝔽13)

1200000
0120000
000037
0000610
003700
0061000
,
010000
1200000
000010
000001
001000
000100
,
1200000
010000
000100
0012100
0000012
0000112
,
100000
0120000
0012100
000100
0000121
000001

G:=sub<GL(6,GF(13))| [12,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,3,6,0,0,0,0,7,10,0,0,3,6,0,0,0,0,7,10,0,0],[0,12,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,1,0,0],[12,0,0,0,0,0,0,1,0,0,0,0,0,0,0,12,0,0,0,0,1,1,0,0,0,0,0,0,0,1,0,0,0,0,12,12],[1,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,1,1,0,0,0,0,0,0,12,0,0,0,0,0,1,1] >;

C4220D6 in GAP, Magma, Sage, TeX

C_4^2\rtimes_{20}D_6
% in TeX

G:=Group("C4^2:20D6");
// GroupNames label

G:=SmallGroup(192,1233);
// by ID

G=gap.SmallGroup(192,1233);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,219,675,570,297,192,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^6=d^2=1,a*b=b*a,c*a*c^-1=d*a*d=a^-1,c*b*c^-1=a^2*b^-1,d*b*d=b^-1,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽